
ar
X

iv
:2

30
5.

00
58

0v
1 

 [
m

at
h.

O
C

] 
 3

0 
A

pr
 2

02
3

AN OPTIMAL TRANSPORT ANALOGUE OF THE RUDIN OSHER
FATEMI MODEL AND ITS CORRESPONDING MULTISCALE

THEORY∗

TRISTAN MILNE† AND ADRIAN NACHMAN†‡

Abstract. We develop a theory for image restoration with a learned regularizer that is analogous
to that of Meyer’s characterization of solutions of the classical variational method of Rudin-Osher-
Fatemi (ROF). The learned regularizer we use is a Kantorovich potential for an optimal transport
problem of mapping a distribution of noisy images onto clean ones, as first proposed by Lunz,
Öktem and Schönlieb. We show that the effect of their restoration method on the distribution
of the images is an explicit Euler discretization of a gradient flow on probability space, while our
variational problem, dubbed Wasserstein ROF (WROF), is the corresponding implicit discretization.
We obtain our geometric characterisation of the solution in this setting by first proving a more general
convex analysis theorem for variational problems with solutions characterised by projections. We
then use optimal transport arguments to obtain our WROF theorem from this general result, as
well as a decomposition of a transport map into large scale ”features” and small scale ”details”,
where scale refers to the magnitude of the transport distance. Further, we leverage our theory
to analyze two algorithms which iterate WROF. We refer to these as iterative regularization and
multiscale transport. For the former we prove convergence to the clean data. For the latter we
produce successive approximations to the target distribution that match it up to finer and finer
scales. These algorithms are in complete analogy to well-known effective methods based on ROF for
iterative denoising, respectively hierarchical image decomposition. We also obtain an analogue of
the Tadmor Nezzar Vese energy identity which decomposes the Wasserstein 2 distance between two
measures into a sum of non-negative terms that correspond to transport costs at different scales.

Key words. variational image restoration, learned regularizers, optimal transport, multiscale
optimal transport

MSC codes. 94A08, 90B06

1. Introduction. A well-known classical method for image restoration is the
total variation approach of Rudin-Osher-Fatemi (ROF) [29]. In this technique, a
noisy image f ∈ L2(R2) is restored by solving the problem

(1.1) min
u∈L2(R2)

1

2
‖u− f‖2L2(R2) + λ‖u‖TV .

Here, ‖u‖TV is the total variation norm of u, a regularizer known for promoting
smoothness while preserving edges. Related to (1.1) is the more recent variational
denoising method of [21]. The important novelty of [21] is that it uses a learned
regularizer instead of the TV -norm to impose regularity. The motivation for this is
that one may be able to obtain a more effective regularizer – and experiments show
that this is in fact the case – by learning it from datasets of noisy and clean images
rather than using a hand-crafted one. The particular learned regularizer proposed in
[21] is a Kantorovich potential u0 for the Wasserstein 1 distance W1(µ, ν), where µ
and ν are probability distributions of noisy and clean data, respectively, on a compact
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2 T. MILNE, A. NACHMAN

and convex domain Ω ⊂ R
d. That is, u0 solves the problem

sup
u∈1-Lip(Ω)

∫

Ω

u(x)dµ(x) −

∫

Ω

u(y)dν(y),

where 1-Lip(Ω) is the set of functions with Lipschitz constant 1 on Ω. The solution
u0 is thus incentivized to take large values on the noisy data µ and small values on
the real data ν, justifying its role in restoring a noisy image1 x0 ∼ µ by solving

(1.2) min
x∈Ω

1

2
|x− x0|

2 + λu0(x).

Experiments in [21] show that denoising performance is improved by using this learned
regularizer as opposed to the TV -norm.

The ROF model has been intensively studied and has a well developed and beau-
tiful theory (e.g. [23, 8, 9, 10]). Let us briefly outline some of the results in [23]. The
solution uλ to (1.1) can be described geometrically as the projection of 0 onto a certain
norm ball of radius λ centred at f . Moreover, the wavelet coefficients of the residual
f − uλ satisfy an ℓ∞ bound in terms of λ, and an approximate solution to (1.1) can
be obtained via soft thresholding of the wavelet coefficients of f . Building on these
results, (1.1) can be solved iteratively to obtain iterative denoising (see [4] or Section
7.1 of [32]) and the non-linear hierarchical image decomposition of [33]. The latter
can be viewed as non-linear harmonic analysis of the image into components at finer
and finer scale, and the analogy is further strengthened by an elegant corresponding
energy equality.

We were motivated by these results for ROF to search for a corresponding theory
for a learned regularizer problem related to (1.2). The first part of this paper estab-
lishes analogous theorems to those of [23] for a learned regularizer setting. It also
includes a decomposition of a certain transport map into large scale “features” and
small scale “details”; in this context, scale refers to the magnitude of the transport
distance. The second part of the paper leverages our results to analyze two natural
iterative optimal transport procedures. We refer to these as iterative regularization
and multiscale transport, as they are in correspondence with iterative denoising with
ROF and the multiscale image decomposition of [33]. For the former, we prove con-
vergence towards the clean data distribution ν. The latter has a richer structure, and
modifies ν at each stage to obtain a “sketch” of µ which is indistinguishable from it
up to a pre-defined scale. Our results in this direction also include an energy iden-
tity analogous to that of [33] which decomposes the squared Wasserstein 2 distance
W 2

2 (µ, ν) into a sum of non-negative terms which picks out the scales of transport.
While (1.2) is a pointwise formulation of image restoration, the setting is more

global in that u0 depends on the distribution µ and ν of noisy and clean images. We
have thus found it more natural to analyse the measure obtained by modifying µ with
the solution map to (1.2). Taking this as a starting point, the main object of study
in this paper is

(WROF) inf
ρ∈P(Ω)

1

2
W 2

2 (µ, ρ) + λW1(ρ, ν).

Here P(Ω) is the space of Borel probability measures on Ω, and for p ≥ 1, Wp :
P(Ω) × P(Ω) → R is the Wasserstein p distance; for more background on optimal

1Images are taken as vectors in R
d here, unlike (1.1), where they are elements of L2(R2).
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transport we refer the reader to [30] or [34]. Given that µ consists of noisy images,
and ν is a distribution of clean images, we view 1

2W
2
2 (µ, ρ) as a fidelity term while

W1(ρ, ν) measures regularity. As we will see in Theorem 1.3 and Theorem 1.6, this
problem has properties which are in exact correspondence with the aforementioned
results for ROF. As a consequence we call it Wassertein ROF (or WROF for short).

To motivate the study of (WROF), let us specify its relationship to the image
denoising technique of [21]. We will show, in Lemma 3.3, that the measure obtained
by pushing µ forward under the solution map of (1.2) is the unique solution to

(1.3) inf
ρ∈P(Ω)

1

2
W 2

2 (ρ, µ) + λ〈u0, ρ〉.

Since u0 is a sub-gradient of the convex functional µ 7→W1(µ, ν), (1.3) can be viewed
as an explicit Euler discretization of a gradient flow on the space W2(Ω) of probability
distributions metrized by the Wasserstein 2 distance. A step of the implicit Euler dis-
cretization of the same flow is (WROF). We focus on (WROF), as opposed to (1.3),
because in general the implicit method has better properties than the explicit one.
We note, however, that in certain settings the two approaches coincide (see Proposi-
tion 3.5). In addition, the implicit Euler approach retains a pointwise reconstruction
method; there is a continuous function ϕλ such that the solution ρλ to (WROF) is
obtained by modifying µ pointwise by the solution map for

(1.4) inf
x∈Ω

1

2
|x− x0|

2 − ϕλ(x).

In fact, ϕλ is a Kantorovich potential for the transport from µ to ν under the cost func-
tion c2,λ defined in (1.7) (see Proposition 1.4). In this sense, the solution to (WROF)
is obtained via restoration with a learned regularizer −ϕλ. Moreover, ϕλ can be taken
so that 1

2 |x|
2−ϕλ(x) is convex, which implies that the pointwise restoration algorithm

(1.4) has the additional benefit of being a convex optimization problem; in this light,
(1.4) bears a similarity to the convex learned regularizers of [28]. We also suspect that
restoration via (1.4) may be more effective than (1.2), since Proposition 1.8 shows that
iterations of this procedure provably converge to the clean image distribution ν.

In the remainder of this section we will summarize our main results, with Subsec-
tion 1.1 describing our geometric characterisation of the solution of (WROF), while
Subsection 1.2 and Subsection 1.3 outline our iterative procedures.

1.1. Geometric characterisation of the solution of (WROF). In this sec-
tion we provide analogues in the setting of a learned regularizer of results giving a
geometric characterisation of the solution to ROF.

First, we recall some classical results for ROF. In studying this problem, it is
helpful to define the dual norm to ‖·‖TV ; for v ∈ L2(R2), define the ∗-norm as

(1.5) ‖v‖∗ = sup{

∫

R2

vudx | ‖u‖TV ≤ 1}.

The following theorem, mentioned in Section 1, is a slight reformulation of results from
[23] on the solution to (1.1). Specifically, it characterises the solution as a projection
of 0 onto a ball in the ∗-norm centred at f .

Theorem 1.1 (Meyer). For all λ > 0, (1.1) has a unique solution uλ, which can

also be expressed as the solution to

(1.6) min
‖u−f‖

∗
≤λ

‖u‖2L2(R2).
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Consequently, if ‖f‖∗ ≤ λ, uλ = 0. On the other hand, if ‖f‖∗ > λ, then ‖f − uλ‖∗ =
λ and

∫

R2

uλ(f − uλ)dx = λ‖u‖TV .

Remark 1.2. Theorem 1.1 provides a formal statement of some of the results we
have mentioned in Section 1. For a statement of further results on ROF, such as
the ℓ∞ bound on the wavelet coefficients of f − uλ or the fact that an approximate
solution can be obtained by applying soft-thresholding to the wavelet coefficients of
f , see [23], Lemma 10, Section 1.14.

Our Theorem 1.3 gives analogous results for (WROF). To make the analogy clear,
Table 1 gives the correspondence between the key concepts. In this case, the measure
ν is projected with respect to a divergence Dλ onto a set of measures Bλ(µ). We
will be more precise about Dλ and Bλ(µ) in (5.8) and (5.6). We will see that these
notions are natural from the point of view of convex analysis; for now, we describe
them in intuitive terms.

A key role will be played by an optimal transport problem that uses a cost function
c2,λ : Ω × Ω → R related to the Huber loss function [13] for robust estimation. It is
given by

(1.7) c2,λ(x, y) =

{

1
2 |x− y|2 |x− y| ≤ λ,

λ|x− y| − λ2

2 |x− y| ≥ λ.

This can be viewed as a variation on the standard cost function c2(x, y) =
1
2 |x− y|2,

except with a certain economy of scale; in particular, the cost of transport at distances
larger than λ is discounted. This may be advantageous for image restoration since
this cost is robust to outliers. The relationship between the solution ρλ to (WROF)
and an optimal plan transporting µ to ν under the cost c2,λ will be made explicit in
Proposition 1.4. We also note that the minimum value of (WROF) is the optimal
transport cost from µ to ν for the pointwise cost c2,λ; see Corollary 5.8.

The setBλ(µ) consists of measures which can be reached from µ with displacement
less than λ by an optimal transport plan for the cost c2,λ. In this sense, measures in
Bλ(µ) are indistinguishable from µ up to scale λ.

The divergence Dλ(ν, ρ) is non-negative, and is 0 only when ρ = ν provided µ is
absolutely continuous with respect to Lebesgue measure, which we denote by µ≪ Ld.
Further, we will show that Dλ(ν, ρ) has an interesting economic interpretation. In
short, assuming that goods are sold to consumers with distribution ν and purchased
from a manufacturer with distribution ρ, Dλ(ν, ρ) represents the total loss of value
in a supply chain when the transport cost has an economy of scale and consumers
adopt a “buy local” policy. More concretely, at the optimal ρλ for (WROF), Dλ(ν, ρλ)
measures the amount of transport between µ and ν at scale larger than λ; our results
(specifically Theorem 5.6, together with Corollary 5.8), imply

(1.8)

∫

Ω2

1

2
(|x − y| − λ)2+dγ̃0 ≥ Dλ(ν, ρλ) ≥

∫

Ω2

1

2
(|x− y| − λ)2+dγ0,

where γ̃0 and γ0 are optimal plans for transporting µ to ν under the costs c2,λ and
c2, respectively.

Analogously to Theorem 1.1, our first theorem expresses the solution to (WROF)
as a projection of ν onto Bλ(µ). We also include an additional result (see (1.11))
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Table 1

The analogy between (1.1) and (WROF). The decompositions of f and S0 are described in

(1.15) and (1.13), respectively.

ROF WROF

Fidelity ‖u− f‖2L2(R2) W 2
2 (ρ, µ)

Regularity ‖u‖TV W1(ρ, ν)

Projection Metric ‖u‖2L2(R2) Dλ(ν, ρ)

Projection Set {u | ‖u− f‖∗ ≤ λ} Bλ(µ)
Decomposition f = vλ + uλ S0 = T−1

λ ◦ Sλ

which is analogous to the ℓ∞ bound on the wavelet coefficients of the residual f − uλ
mentioned in Remark 1.2.

Theorem 1.3 (Main theorem, part 1). Let Ω be compact and convex with non-

negligible interior, and suppose µ≪ Ld. For all λ > 0, (WROF) has a unique solution

ρλ, which can also be expressed as the solution to

(1.9) min
ρ∈Bλ(µ)

Dλ(ν, ρ)

Consequently, if ν ∈ Bλ(µ), ρλ = ν. On the other hand, if ν 6∈ Bλ(µ), then there

exists ϕλ a Kantorovich potential for W2(µ, ρλ) satisfying Lip(ϕλ) = λ and

(1.10)

∫

Ω

ϕλ(dν − dρλ) = λW1(ρλ, ν).

Finally, the optimal transport map Tλ for W2(µ, ρλ) satisfies

(1.11) ‖I − Tλ‖L∞(µ) ≤ λ.

A more detailed version of this result is given in Theorem 5.6. In Section 4 and
Section 5 we will clarify the strong similarities between Theorem 1.1 and Theorem 1.3
by proving a general theorem for a class of convex optimization problems of the
form (4.1) for which the solution map is a projection. We will show that ROF and
(WROF) are included in this class, so that Theorem 1.1 and Theorem 1.3 will follow
as particular cases.

More insight into ϕλ and Tλ from Theorem 1.3 is given in the following proposi-
tion.

Proposition 1.4. Under the notation and assumptions of Theorem 1.3,
1. ϕλ is a solution to

sup
ϕ∈C(Ω)

∫

Ω

ϕc2,λdµ+

∫

Ω

ϕdν,

where ϕc2,λ(x) = infy∈Ω c2,λ(x, y)− φ(y),
2. Tλ, which by definition satisfies (Tλ)#µ = ρλ, is the solution map to (1.4),

and

3. if γ0 is an optimal transport plan for transporting µ to ν under the cost c2,λ,
and if (x, y) ∈ spt(γ0), then

(1.12) Tλ(x) =

{

y |x− y| ≤ λ,
(

1− λ
|x−y|

)

x+ λ
|x−y|y |x− y| > λ.
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Remark 1.5. Proposition 1.4 shows precisely the outcome Tλ(x0) of restoring a
noisy image x0 by solving (1.4) with the learned regularizer ϕλ. The answer is de-
termined by γ0; if (x0, y0) ∈ spt(γ0) is such that |x0 − y0| ≤ λ, Tλ completes the
transport from x0 to y0. On the other hand, if |x0 − y0| > λ, Tλ takes a step of size
λ in the direction of y0.

Assuming that ν is also absolutely continuous, we further establish in the following
theorem that ρλ is obtained by applying soft thresholding to an optimal transport
map from ν to µ. Recall that the soft thresholding map is given by sλ : R → R,

sλ(t) := sign(t)(|t| − λ)+.

This provides an analogous result to the soft thresholding property of ROF men-
tioned in Remark 1.2, except that here we obtain the exact solution rather than an
approximate one.

Theorem 1.6 (Main theorem, part 2). In addition to the hypotheses of Theo-

rem 1.3, assume that ν ≪ Ld. Then

1. ρλ ≪ Ld,

2. S0 is an optimal transport map for the cost c2,λ sending ν to µ if and only if

(1.13) S0 = T−1
λ ◦ Sλ

where T−1
λ is a Borel map satisfying T−1

λ ◦ Tλ(x) = x µ almost everywhere,

and Sλ is an optimal transport map for W1(ν, ρλ).
3. For any such S0, the solution ρλ to (WROF) is obtained as ρλ = (Sλ)#ν,

where

(1.14) Sλ(y) := y + sλ(|S0(y)− y|)
S0(y)− y

|S0(y)− y|
.

Remark 1.7. This result gives a further interpretation of λ as a scale parameter,
in the sense that the solution ρλ to (WROF) is obtained from ν by only transporting
mass that moves larger than distance λ under S0. The formula (1.13) also deepens
the analogy to ROF. Recall that, writing the residual f − uλ as vλ, ROF provides a
decomposition of the image f into “features” uλ and “details” vλ, connected by the
formula

(1.15) f = vλ + uλ.

The equation (1.13) is an optimal transport analogue of this decomposition, the anal-
ogy being obtained by replacing addition with composition. Thus, the transport map
S0 is decomposed into Sλ (which we think of as features in the sense that it only
involves large scale transport) and details T−1

λ which only involve transport less than
distance λ (see (1.11)). This decomposition will be analysed in detail in Section 7.

1.2. Iterative regularization. We now move to a description of the results in
the second part of the paper, and introduce our first iterative procedure. It is in
correspondence with iterated denoising through repeated applications of ROF (see
[4] or Section 7.1 of [32]). Here we study iterations of the problem (WROF), where
at each stage µ is replaced with the previous solution ρλ. When µ is a distribution
of noisy images and ν is a distribution of clean ones, this represents the iterative
regularization of µ. The following proposition is our main result in this direction.
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Proposition 1.8. Let Ω be convex and compact with non-negligible interior. Let

µ, ν ≪ Ld, and suppose that (λn)
∞
n=0 is a sequence of positive step sizes with

(1.16)

∞
∑

n=0

λn = +∞.

Given µ0 := µ, for each n ≥ 0 define

(1.17) µn+1 := argmin
ρ∈P(Ω)

1

2
W 2

2 (ρ, µn) + λnW1(ρ, ν).

Then

(1.18) lim
n→∞

W1(µn, ν) = 0.

We note that due to statement 1 of Theorem 1.6, if µ and ν are absolutely contin-
uous then the solution to (WROF) is absolutely continuous as well. In connection
with Theorem 1.3, this guarantees that the argmin in (1.17) is unique for each n,
establishing that the sequence µn is well defined.

1.3. Multiscale transport and a non-linear energy decomposition. Our
second iterative process proceeds in the other direction (i.e. ”adding detail” as op-
posed to denoising), and reveals a richer structure. It is analogous to the hierarchical
image decomposition from [33], and so we first briefly recall those results here. This
approach leverages ROF to decompose an image f into a hierarchical representation
(un)

∞
n=1 of features at different scales by setting

(1.19) un+1 := argmin
u∈L2(R2)

‖u− vn‖
2
L2(R2) + λn+1‖u‖TV , vn = f −

n
∑

i=1

ui,

where v0 := f and λn = 2−n+1λ1. Thus, at each stage the “detail” component
vn is broken down into smaller scale features un+1 and details vn+1. The following
theorem2 establishes that (un)

∞
n=1 is indeed a decomposition of f and provides a

non-linear harmonic analysis identity for ‖f‖2L2(R2).

Theorem 1.9 (from [26]). For f ∈ L2(R2), the sequence (un)
∞
n=1 defined by

(1.19) satisfies

(1.20) f =

∞
∑

n=1

un,

where the convergence holds in the strong sense in L2(R2). Further,

(1.21) ‖f‖2L2(R2) =

∞
∑

n=1

‖un‖
2
L2(R2) + λn‖un‖TV .

More insight on the scale of the decomposition (un)
∞
n=1 can be obtained from Theo-

rem 1.1, which states that

(1.22)

∥

∥

∥

∥

∥

f −
n
∑

i=1

ui

∥

∥

∥

∥

∥

∗

≤
λ1
2n
.

2[33] included this result for the cases f ∈ BV (R2) or f in an intermediate space between BV (R2)
and L2(R2). A proof requiring only f ∈ L2(R2) was obtained in [26]
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Thus f and the partial sum
∑n

i=1 ui agree up to a term of scale at most 2−nλ1 in
the norm ‖·‖∗. As we have mentioned, according to [23], Lemma 10, Section 1.14 this
puts an ℓ∞ bound on the wavelet coefficients of f −

∑n
i=1 ui.

By analogy to this approach, our iterative process evolves by leaving µ untouched
at each step and replacing ν with the previous iterate, νn; the manner in which
this is analogous to (1.19) will be made precise in Remark 8.2. We describe this
procedure as “adding detail” since by solving (WROF) with a large value of λ we
obtain a modification of ν which is a “sketch” of µ, in that the two measures are
indistinguishable up to transport at scale λ (see Theorem 1.3). By repeating this
process with a smaller value of λ we refine this sketch, obtaining at each stage finer
details of µ. Note also that under the additional assumption ν ≪ Ld, Theorem 1.6
implies that we are decomposing a transport map at each stage of this procedure into
“features” and ”details”, as determined by the scale of the transport relative to λ.
Due to the soft thresholding (see (1.14)), the latter are untouched, to be resolved at
future steps, while the former are partially carried out until the remaining transport
becomes a detail.

Finally, we obtain in (1.25) a decomposition of the total energy W 2
2 (µ, ν) which

includes all the scales of transport from ν to µ via (1.8); this is in correspondence
with the identity (1.21).

The following proposition summarizes the properties of this multiscale algorithm
which are not directly implied by Theorem 1.3 or Theorem 1.6. Note that we do not
require ν ≪ Ld for these results.

Theorem 1.10. Let Ω ⊂ R
d be compact and convex with a non-negligible interior.

Take µ, ν ∈ P(Ω) with µ≪ Ld. Suppose λ0 is given. For each n ≥ 0, set λn+1 = λn/2
and define

(1.23) νn+1 := argmin
ρ∈P(Ω)

1

2
W 2

2 (ρ, µ) + λnW1(ρ, νn),

where ν0 := ν. We have that

1. The sequence νn converges to µ with rate

(1.24)
1

2
W 2

2 (µ, νn) ≤ 2−2n+1λ20,

and,

2. The following energy equality holds

(1.25)
1

2
W 2

2 (ν, µ) =

∞
∑

n=0

Dλn
(νn, νn+1) + λnW1(νn, νn+1).

Remark 1.11. If we add the assumption that ν is absolutely continuous, we obtain
that the measures νn specified in Theorem 1.10 can be written as (Sλn−1

◦· · ·◦Sλ0
)#ν;

see Theorem 1.6. In this way, νn is built up from a composition of Wasserstein
1 optimal maps applied to ν. In this sense we are replacing the summation of the
decomposition in (1.20) with composition, as was done for a multiscale decomposition
of diffeomorphisms in [26].

We now describe the organization of the paper. We provide in Section 2 a discussion
of related work. Then, in Section 3 we elucidate the connection between (WROF) and
the restoration via learned regularizer technique of [21]. In Section 4 we introduce a
general class of optimization problems (which includes both ROF and (WROF)), and
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prove Theorem 4.5 characterising their solution maps as projections. In Section 5,
we use optimal transport arguments to obtain Theorem 1.3 from Theorem 4.5. In
Section 6 we prove that the solution to (WROF) is absolutely continuous if µ and ν
are, and in Section 7 we prove the existence of an optimal transport map from ν to µ
under the Huber cost c2,λ, as well as the soft thresholding formula (1.14). Together,
Section 6 and Section 7 prove Theorem 1.6. Finally, the results for our iterative
procedures (i.e. Proposition 1.8 and Theorem 1.10) are proved in Section 8.

2. Discussion and related work. There is a connection between our iterative
regularization procedure defined in Proposition 1.8 and the JKO scheme [15]. The
latter is related to gradient flows in W2(Ω), which are analysed in more detail in [1]
(see also [31]). The JKO algorithm produces a sequence of measures ρn by iteratively
solving an equation of the type

(2.1) ρn := argmin
ρ∈P(Ω)

1

2λ
W 2

2 (ρn−1, ρ) + F (ρ),

where F is a functional. For F (ρ) =W1(ρ, ν), this problem is precisely (WROF). For
general F , by allowing λ to go to zero and examining the optimality conditions of
(2.1), one can obtain convergence of an interpolation of the iterates ρn to a curve of
measures ρ(t). This curve satisfies a PDE which can be viewed as a gradient flow on
F in the metric space W2(Ω). We expect the PDE that corresponds to our iterative
denoising algorithm to be of the form

(2.2) ∂tρ(t)−∇ · (ρ(t)∇u0(t)) = 0,

where for all t, u0(t) is a Kantorovich potential for W1(ρ(t), ν). We leave the rigorous
derivation to a separate paper. Note that by analogy to ROF such a flow would be
in correspondence with the TV flow in [4].

Other problems of a form similar to (WROF) have been considered in the lit-
erature. A notable example is [6], which finds a smoothed version of a probability
measure µ while retaining edges by solving

min
ρ∈P(Ω)

1

2λ
W 2

2 (µ, ρ) + F (ρ), F (ρ) :=

{

‖ρ‖TV ρ = ρ(x)dx,

+∞ else.

A related problem is that of [20], which keeps F as the total variation norm of a
probability density but replaces the fidelity term 1

2λW
2
2 (µ, ρ) with the Kantorovich-

Rubinstein norm, a quantity that is closely related to the Wasserstein 1 distance, but
is able to handle measures with different mass. To our knowledge the specific problem
given in (WROF) has not been treated before in the literature. Given that previous
works have used the TV norm of a probability density function as a regularity term,
we briefly compare this to our approach of using W1(ρ, ν) in the particular case of ν
as the normalized Lebesgue measure. One might imagine that for this choice of ν,
W1(ρ, ν) would serve a similar role to the TV norm, since it is the minimal amount
of work required to “smooth out” ρ to the constant function. This is not the case,
however. Take Ω = [0, 1]2, with ρ = ρk(x)dx given by

ρk(x1, x2) = 2(1 + sign(sin(2πkx1))).

As k → ∞, W1(ρk, ν) → 0, and yet ‖ρk‖TV → +∞. So the two regularizers play
different roles.
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The field of image restoration with learned regularizers is rapidly developing,
and there are many interesting approaches (e.g. [12, 17, 18, 21, 27]). We focus
on [21] as we found it to be a natural and compelling analogue of ROF. Note that
[21] includes several theoretical results, which focus on issues such as stability of
the reconstruction method and a geometric formula for the Kantorovich potential u0
under certain conditions. Let us also note that [27], being related to iterations of the
method from [21], forms a parallel approach to our iterated regularization discussed
in Subsection 1.2.

Lastly, numerical results for either of the procedures outlined in Subsection 1.2
or Subsection 1.3 could be obtained using the dual problem (see Subsection 5.1),

(2.3) sup
ϕ∈λ-Lip(Ω)

∫

Ω

ϕc2dµ+

∫

Ω

ϕdν,

where λ-Lip(Ω) is the set of Lipschitz continuous functions on Ω with constant λ, and
ϕc2 is the c2 transform of ϕ, defined in Definition 3.1 below. Indeed, Theorem 5.6
shows that the solution ρλ to (WROF) can be realized by applying the solution map
to (1.4) pointwise to µ, where ϕλ solves (2.3). By analogy to [11], it is natural to
obtain such a ϕλ by parametrizing it with a neural network ϕw with weights w and
solving the gradient penalty problem

sup
w

∫

Ω

ϕc2
w (x)dµ(x) +

∫

Ω

ϕw(y)dν(y)−
λ

2

∫

Ω

(|∇ϕw | − λ)2+dσ(x),

for large λ, where σ is the sampling distribution from [11]. Optimizing the weights w
requires the computation of the c2-transform of ϕw. A general and efficient numerical
algorithm to do so has been introduced in [14], a method specific to neural networks
has been given in [22], and a new approach which scales well to high dimensions has
recently been proposed in [3].

3. Links between (WROF) and denoising by adversarial regularization.
In this section we will study the relationship between (WROF) and the denoising
technique of [21]. We will show in Subsection 3.1 that the approach of [21] can be
viewed as an explicit Euler discretization of the gradient flow onW1(·, ν) in the metric
space W2(Ω). In contrast, (WROF) can be viewed as an implicit Euler discretization
of the same flow on the same metric space. Moreover, we will establish in Subsec-
tion 3.2 that these techniques produce identical measures under the assumption that
the minimal displacement of the ray monotone optimal transport map for W1(µ, ν)
(see [2] or Section 3.1 of [30]) is larger than λ.

3.1. Explicit and Implicit Euler on W2(Ω). We begin with Lemma 3.2, which
states that (1.2) has a unique solution for almost all x0. This is a standard result; we
include the proof for completeness. We first recall the following definition.

Definition 3.1. For a symmetric cost function c : Ω × Ω → R, and φ ∈ C(Ω),
the function

φc(x) = inf
y∈Ω

c(x, y)− φ(y)

is called the c-transform of φ. If φ is such that there exists a function ψ with φ = ψc,

then one says that φ is c-concave, written φ ∈ c-conc(Ω).

Throughout this paper we will make use of the well known fact that φ ≤ φcc, with
equality if and only if φ is c-concave (see, e.g., [30] Proposition 1.34).
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Lemma 3.2. Let Ω be compact with boundary of Lebesgue measure zero. Let u0 :
Ω → R be lower semi-continuous. Then for almost all x ∈ Ω, the problem

(3.1) min
y∈Ω

1

2
|x− y|2 + λu0(y)

has a unique solution given by x−∇(−λu0)c2(x).

Proof. Since Ω is compact and u0 is lower semi-continuous, (3.1) has a solution
for all x ∈ Ω and the value of the minimum is finite. Compactness of Ω also implies
that (−λu0)c2 is Lipschitz (see, for example, Box 1.8 of [30]), and thus the set of
x0 ∈ Ω \ ∂Ω such that ∇(−λu0)

c2(x0) exists has full Lebesgue measure.
For x0 selected in this way, let y0 ∈ Ω solve (3.1). By definition, for all x ∈ Ω,

(3.2) (−λu0)
c2(x) ≤

1

2
|x− y0|

2 + λu0(y0),

with equality at x = x0. Thus, we obtain that the function x 7→ 1
2 |x − y0|

2 −
(−λu0)c2(x) is minimized at x0. We therefore have

(3.3) y0 = x0 −∇(−λu0)
c2(x0).

This expresses the minimizer y0 of (3.1) for x = x0 explicitly in terms of x0; the
minimizer is therefore unique.

Lemma 3.2 implies that whenever µ≪ Ld and u0 is continuous, (3.1) has a unique
solution µ almost everywhere, given by (I − ∇(−λu0)c2)(x0). The following lemma
characterises the measure we obtain if we push µ forward under this solution map.

Lemma 3.3. In addition to the assumptions of Lemma 3.2, let µ ∈ P(Ω) satisfy

µ ≪ Ld. Let T be a Borel map which coincides with I − ∇(−λu0)c2 , µ almost

everywhere. Then the measure T#µ is the unique solution to the optimization problem

(3.4) inf
ρ∈P(Ω)

1

2
W 2

2 (ρ, µ) + λ〈u0, ρ〉.

Proof. First we note that the map

(3.5) ρ 7→
1

2
W 2

2 (ρ, µ) + λ〈u0, ρ〉

is strictly convex by Theorem 7.19 from [30], which holds since µ is absolutely contin-
uous and Ld(∂Ω) = 0. Thus, if a solution ρ0 to (3.4) exists it is unique. A measure
ρ0 is a minimizer of (3.4) if and only if

0 ∈ ∂

(

1

2
W 2

2 (·, µ) + 〈λu0, ·〉

)

(ρ0)

Since ρ 7→ 〈u0, ρ〉 is linear, this is equivalent to

−λu0 ∈ ∂

(

1

2
W 2

2 (·, µ)

)

(ρ0).

By Proposition 7.17 of [30], which characterises the subdifferential of the convex
function ρ 7→ 1

2W
2
2 (ρ, µ), we conclude that ρ0 is a minimizer of (3.4) if and only if

(3.6)

∫

Ω

(−λu0)
c2dµ+

∫

Ω

(−λu0)dρ0 =
1

2
W 2

2 (µ, ρ0).
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This equality will be proved in in Lemma 5.4 for ρ0 = T#µ, when T is µ almost
everywhere equal to I −∇(−λu0)c2 .

Remark 3.4. We note that Lemma 3.3 describes the distribution one obtains by
applying the denoising technique from [21] pointwise to an absolutely continuous
distribution µ. Indeed, that procedure consists of solving (3.1) given x when u0 is a
Kantorovich potential forW1(µ, ν). It is interesting to observe that while the denoising
technique of [21] applied to a specific image x0 amounts to an implicit Euler scheme on
a Kantorovich potential u0, Lemma 3.3 shows that the distribution one thus obtains
on all images is characterised as an explicit Euler step on the functional W1(·, ν); this
holds since such a u0 is a subgradient of this functional evaluated at µ. Implicit Euler
discretizations are often better behaved, motivating us to replace (1.3) with (WROF).

3.2. Equivalence of (WROF) and denoising by adversarial regulariza-
tion. Here we will show that that under the assumption that λ is less than the
minimal transport length for the ray monotone Wasserstein 1 transport from µ to
ν, the solution to (WROF) and the measure obtained via the technique of [21] are
actually the same.

Proposition 3.5. Suppose that Ω ⊂ R
d is compact and convex, and that µ, ν ∈

P(Ω). Suppose that µ≪ Ld, and that λ > 0 satisfies

(3.7) ess inf
µ

|x− T0(x)| > λ,

where T0 is the unique ray monotone optimal transport map for W1(µ, ν). Take u0 ∈
1-Lip(Ω) a Kantorovich potential for W1(µ, ν), and let T be a Borel map equal to

I − ∇(−λu0)c2 µ almost everywhere. Then ρλ := T#µ is the unique solution to

(WROF).

Proof. Since Ω is convex we immediately obtain that Ld(∂Ω) = 0 (see, for exam-
ple, [19]). Thus, µ ≪ Ld implies that the functional in (WROF) is strictly convex
(via [30], Theorem 7.19 again), and so the solution to (WROF) is unique if it exists.
Next, we claim that if ρ0 ∈ P(Ω) and there exists ϕ0 ∈ λ-Lip(Ω) such that

∫

Ω

ϕ0dν −

∫

Ω

ϕ0dρ0 = λW1(ρ0, ν),(3.8)

and
∫

Ω

ϕc2
0 dµ+

∫

Ω

ϕ0dρ0 =
1

2
W 2

2 (µ, ρ0),(3.9)

then ρ0 solves (WROF). Indeed, by Proposition 7.17 from [30], assumptions (3.8) and
(3.9) imply that

−ϕ0 ∈ ∂ (λW1(·, ν)) (ρ0), ϕ0 ∈ ∂

(

1

2
W 2

2 (·, µ)

)

(ρ0).

As such,

0 = ϕ0 − ϕ0,

∈ ∂

(

1

2
W 2

2 (·, µ)

)

(ρ0) + ∂ (λW1(·, ν)) (ρ0),

⊂ ∂

(

1

2
W 2

2 (·, µ) + λW1(·, ν)

)

(ρ0),
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and thus ρ0 solves (WROF), proving the claim.
Now we assert that these conditions hold for ρλ := T#µ and ϕ0 := −λu0. First,

we note that by Proposition 9 from [25] and Lemma 3.2, the assumption (3.7) implies
that

(3.10) I −∇(−λu0)
c2(x) = I − λ∇u0(x)

µ almost everywhere. Next, observe that convexity of Ω, together with (3.7) and
standard properties of Wasserstein 1 Kantorovich potentials, imply that ρλ ∈ P(Ω).
Also, by Theorem 1 (i) of [24], u0 is a Kantorovich potential for W1(ρλ, ν). As such,
ϕ0 = −λu0 satisfies ϕ0 ∈ λ-Lip(Ω) and (3.8). Finally, (3.9) is given by Lemma 5.4,
since ρλ = T#µ, and by definition T = I − (−λ∇u0)c2 µ almost everywhere.

The link between (WROF) and the denoising method of [21] having been established,
we now analyse solutions of (WROF).

4. A class of minimization problems with solutions given by projec-
tions. In this section we will prove a general theorem about the minimization of a
certain class of convex functions, establishing that the solution map is equivalent to a
projection. We will show that ROF (see (1.1)) and (WROF) are examples of this class
of problems. Thus, we can apply this general theorem to yield Theorem 1.1 and, with
additional arguments from optimal transport, our Theorem 1.3. This puts ROF and
(WROF) within a common framework and provides a fruitful analogy in the sequel.

Let X be a Hausdorff locally convex topological vector space3, and take X∗ as its
continuous dual; in general we will denote by x and x∗ points inX andX∗ respectively.
Let F : X → R be a proper lower semi-continuous convex functional. Recall that the
Legendre dual of such a function is given by F ∗ : X∗ → R ∪ {+∞},

F ∗(x∗) := sup
x∈X

〈x, x∗〉 − F (x),

with 〈·, ·〉 denoting the duality pairing, and set

dom(F ∗) = {x∗ ∈ X∗ | F ∗(x∗) < +∞}.

When studying the subdifferential of F ∗ we will restrict the dual of X∗ to X ⊂ X∗∗,
i.e.

∂F ∗(x∗) := {x ∈ X | ∀y∗ ∈ X∗, F ∗(y∗) ≥ F ∗(x∗) + 〈x, y∗ − x∗〉}.

We will focus on F which are in fact continuous, and such that F ∗ is a strictly convex
function. Take K ⊂ X as a closed, convex, non-empty set satisfying K = −K and
let 1K denote the indicator function of K. For y∗0 ∈ X∗, consider the optimization
problem

(4.1) min
x∗∈X∗

F ∗(x∗) + 1∗K(x∗ − y∗0).

To motivate the analysis of such problems, we will now indicate that both ROF and
(WROF) are examples.

3We will not need this amount of generality for our applications, but we phrase our theorem in
this setting to indicate that nothing more is needed.
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Example 4.1 (ROF). Take X = L2(R2), and F : L2(R2) → R as

F (u) =
1

2
‖u‖2L2(R2) + 〈f, u〉.

This functional is obviously continuous and convex. It is a simple exercise to show
that its dual is

F ∗(u) =
1

2
‖u− f‖2L2(R2),

which is strictly convex. Take the set K as

K := {v ∈ L2(R2) | ‖v‖∗ ≤ λ}.

It is clear that K is convex, K = −K, and K is closed. It is also not difficult to show
that

1∗K(u) := sup
v∈K

∫

R2

vudx = λ‖u‖TV

Thus, we see that ROF (i.e. (1.1)) is an example of (4.1), with y∗0 = 0.

Example 4.2 (WROF). Assume Ω ⊂ R
d is compact and convex (and therefore

Ld(∂Ω) = 0). Let X = C(Ω) with the topology induced by the sup norm. Then
X∗ = M(Ω), the set of finite signed Borel measures on Ω. Let µ ∈ P(Ω) with
µ≪ Ld, and take F : C(Ω) → R as the functional

F (ϕ) := −

∫

Ω

ϕc2dµ.

It is shown in the proof of Proposition 7.17 of [30] that F defined in this way is convex
and continuous, and that F ∗ satisfies, for ρ ∈ M(Ω),

F ∗(ρ) =

{

1
2W

2
2 (ρ, µ) ρ ∈ P(Ω),

+∞ else .

Further, Proposition 7.19 of [30] proves that F ∗ is strictly convex when µ≪ Ld.
Now take K = λ-Lip(Ω). This set is convex and closed in C(Ω), and satisfies

K = −K. In addition, for ν, ρ ∈ P(Ω), we have

1∗K(ρ− ν) = sup
ϕ∈λ-Lip(Ω)

〈ϕ, ρ− ν〉,

= λW1(ρ, ν).

Thus, (WROF) is of the form (4.1).

For our analysis of (4.1), we find it natural to define the divergenceD : dom(F ∗)×
dom(F ∗) → R ∪ {+∞} by

(4.2) D(y∗, x∗) := F ∗(y∗)− F ∗(x∗)− sup
x∈∂F∗(x∗)∩K

〈x, y∗ − x∗〉.

The following lemma shows that D has properties similar to those of a Bregman
divergence.
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Lemma 4.3. For all y∗, x∗ ∈ dom(F ∗), the functional D satisfies

D(y∗, x∗) ≥ 0.

Moreover, if F ∗ is strictly convex, then D(y∗, x∗) = 0 if and only if ∂F ∗(x∗)∩K 6= ∅
and y∗ = x∗.

Proof. The claim D(y∗, x∗) ≥ 0 clearly holds if ∂F ∗(x∗) ∩K = ∅. On the other
hand, if ∂F ∗(x∗) ∩ K 6= ∅ the definition of the subdifferential of F ∗ confirms that
D(y∗, x∗) ≥ 0. Clearly, if ∂F ∗(x∗) ∩ K 6= ∅ and y∗ = x∗ we have D(y∗, x∗) = 0.
On the other hand, let F ∗ be strictly convex. If D(y∗, x∗) = 0, then take ǫ > 0 and
xǫ ∈ ∂F ∗(x∗) ∩K such that

sup
x∈∂F∗(x∗)∩K

〈x, y∗ − x∗〉 − ǫ ≤ 〈xǫ, y
∗ − x∗〉.

Since D(y∗, x∗) = 0, we therefore obtain

F ∗(y∗) ≤ F ∗(x∗) + 〈xǫ, y
∗ − x∗〉+ ǫ.

Hence, for t ∈ [0, 1],

F ∗((1 − t)x∗ + ty∗) ≤ (1− t)F ∗(x∗) + tF ∗(y∗),

≤ (1− t)F ∗(x∗) + tF ∗(x∗)

+ 〈xǫ, (1− t)x∗ + ty∗ − x∗〉+ tǫ,

≤ F ∗((1− t)x∗ + ty∗) + tǫ.

Since ǫ is arbitrary, we obtain that F ∗ is affine on the segment [x∗, y∗], a contradiction
to strict convexity unless x∗ = y∗.

Example 4.4. Let us determine D is in the context of ROF. Recall that in this
case, F ∗(u) = 1

2‖u− f‖2L2(R2). Then ∂F ∗(u) is a singleton, given by {u − f}. So

D(v, u) = +∞ unless ‖u− f‖∗ ≤ λ. In that case,

D(v, u) =
1

2
‖v − f‖2L2(R2) −

1

2
‖u− f‖2L2(R2) − 〈u− f, v − u〉,

=
1

2
‖u− v‖2L2(R2).

The description of D in the context of (WROF) will be given in Subsection 5.1.1.

For a non-empty convex set K ⊂ X satisfying K = −K, define the semi-norm ‖·‖K :
X → R ∪ {+∞} given by

‖x‖K = inf{t > 0 |
x

t
∈ K}.

We can now state the main result of this section, which provides conditions under
which the solution to (4.1), if it exists, can be expressed as a projection in the diver-
gence D onto the set of x∗ such that ∂F ∗(x∗) ∩K 6= ∅.

Theorem 4.5. Suppose that X is a Hausdorff locally convex topological vector

space, with X∗ as its dual. Assume F : X → R is continuous and convex, and that its

dual F ∗ is strictly convex. Let K ⊂ X be a closed, convex, non-empty set satisfying

K = −K. Suppose that y∗0 ∈ dom(F ∗), and the problem

(4.3) sup
x∈K

〈x, y∗0〉 − F (x),
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has a solution x0. Then

a. (4.1) has a unique solution x∗0 given by the single element of ∂F (x0),
b. x∗0 is also a solution to

(4.4) min
F∗(x∗)∩K 6=∅

D(y∗0 , x
∗),

and,

c. the values of (4.1), (4.3), and F ∗(y∗0)−D(y∗0 , x
∗
0) coincide.

Given b, we obtain the following dichotomy:

1. If ∂F ∗(y∗0) ∩K 6= ∅, then x∗0 = y∗0 .
2. Otherwise, x∗0 6= y∗0 , and any solution x0 to (4.3) satisfies x0 ∈ ∂F ∗(x∗0),

‖x0‖K = 1, and

(4.5) 〈x0, y
∗
0 − x∗0〉 = 1∗K(x∗0 − y∗0).

Remark 4.6. Let the solution map to (4.1) as a function of y∗0 be denoted P . Then
the dichotomy presented in Theorem 4.5 confirms that P (P (y∗0)) = P (y∗0); i.e. P is a
projection.

Before proving Theorem 4.5, we show how it yields Theorem 1.1.

Proof of Theorem 1.1. Recalling Example 4.1 and Example 4.4, we have that
(1.1) is of the form (4.1) for y∗0 = 0, and

F (u) =
1

2
‖u‖2L2(R2) + 〈f, u〉, F ∗(u) =

1

2
‖u− f‖2L2(R2)

K := {v ∈ L2(R2) | ‖v‖∗ ≤ λ}.

D(v, u) =

{

1
2‖u− v‖2L2(R2) ‖u− f‖∗ ≤ λ,

+∞ ‖u− f‖∗ > λ

The problem (4.3) therefore takes the form

max
‖v‖

∗
≤λ

−
1

2
‖v‖2L2(R2) − 〈v, f〉.

This problem has a unique solution ṽλ since K is convex, non-empty and closed,
and the function v 7→ 1

2‖v‖
2
L2(R2) + 〈v, f〉 is continuous, strictly convex, and coercive

on L2(R2). We may therefore apply Theorem 4.5 to obtain that (1.1) has a unique
solution given by

uλ = f + ṽλ.

Given our calculation for D in Example 4.4, we obtain that uλ is also a solution of
the problem in (4.4), which is

min
‖u−f‖

∗
≤λ

‖u‖2L2(R2).

Thus, if ‖f‖∗ ≤ λ, it is clear that uλ = 0. On the other hand, ‖f‖∗ > λ if and only if
∂F ∗(0)∩K = ∅. Using Theorem 4.5, we obtain that ṽλ ∈ K satisfies ‖ṽλ‖K = 1, and

∫

R2

uλ(f − uλ)dx = 〈ṽλ,−uλ〉 = λ‖uλ‖TV .
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Finally, we compute ‖v‖K = ‖v‖∗/λ. As such, ‖ṽλ‖K = 1 is equivalent to ‖ṽλ‖∗ = λ,
and the proof is complete.

Proof of Theorem 4.5. We start by proving statement a. We note that this result
is obtainable using Theorem 2.7.1 of [35], but provide an elementary proof here. Let
x0 be a solution to (4.3). Then, equivalently, x0 solves

min
x∈X

F (x) − 〈x, y∗0〉+ 1K(x).

Noting that x 7→ F (x)−〈x, y∗0 〉 and 1K(x) are both proper convex functions, and that
the former is finite and continuous, we can apply part (iii) of Theorem 2.8.7 from [35]
to conclude that

(4.6) ∂ (F − 〈·, y∗0〉+ 1K) = ∂F − {y∗0}+ ∂1K .

Since F ∗ is strictly convex, ∂F (x0) contains at most one element. Further, since F
is convex, proper, and continuous, Theorem 2.4.9 from [35] shows that ∂F (x) is non-
empty for all x ∈ X , and thus ∂F (x) contains a unique element for all x ∈ X . Since
x0 is a solution of (4.3), the unique element x∗0 ∈ ∂F (x0) satisfies

0 ∈ x∗0 − y∗0 + ∂1K(x0).

Since K = −K, we have ∂1K(−x0) = −∂1K(x0). Thus,

(4.7) x∗0 − y∗0 ∈ ∂1K(−x0).

Next, since H : X → R ∪ {+∞} is proper, convex, and lower semi-continuous, then
for all x such that H(x) < +∞ we have the well known fact that4

(4.8) x∗ ∈ ∂H(x) ⇔ x ∈ ∂H∗(x∗) ⇔ H(x) +H∗(x∗) = 〈x, x∗〉.

We apply this to H = 1K , which is proper because K is non-empty, convex because
K is convex, and lower semi-continuous because K is closed. Thus, (4.7) yields

−x0 ∈ ∂1∗K(x∗0 − y∗0).

It is an elementary fact that (∂H(· − y∗)) (x∗) = ∂H(x∗ − y∗). Recalling that x∗0 ∈
∂F (x0) and using (4.8) again, we get

0 ∈ ∂F ∗(x∗0) + ∂1∗K(x∗0 − y∗0) ⊂ ∂ (F ∗ + 1∗K(· − y∗0)) (x
∗
0),

which confirms that x∗0 is a minimizer of (4.1). By the assumed strict convexity of F ∗,
x∗0 is the unique minimizer. We have shown that if x0 solves (4.3), then the unique
x∗0 ∈ ∂F (x0) solves (4.1), which proves statement a.

Statements b and c will be proven together. Regarding the values of (4.1) and
(4.3), note that by definition of the Legendre dual, for all x∗ ∈ X∗ and x ∈ K,

F ∗(x∗) + 1∗K(x∗ − y∗0) ≥ 〈x, x∗〉 − F (x) + 〈−x, x∗ − y∗0〉,

= 〈x, y∗0〉 − F (x).

4See, for example, Theorem 2.4.4 from [35] for a proof of this in our setting.
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Hence,

inf
x∗∈X∗

F ∗(x∗) + 1∗K(x∗ − y∗0) ≥ sup
x∈K

〈x, y∗0〉 − F (x).

On the other hand, for x0 optimal in (4.3) and x∗0 ∈ ∂F (x0) optimal in (4.1), (4.8)
implies

F ∗(x∗0) + 1∗K(x∗0 − y∗0) = 〈x0, x
∗
0〉 − F (x0) + 〈−x0, x

∗
0 − y∗0〉,

= 〈x0, y
∗
0〉 − F (x0).

This establishes that the values of (4.1) and (4.3) are the same.
Next, we turn to (4.4). Invoking (4.8) again, and recalling that ∂F (x) contains a

unique element for all x ∈ X , we obtain that for each x ∈ K, there exists x∗ ∈ ∂F (x)
such that ∂F ∗(x∗) ∩K 6= ∅. As such,

〈x, y∗0〉 − F (x) = 〈x, y∗0 − x∗〉+ F ∗(x∗),

= F ∗(y∗0)− (F ∗(y∗0)− F ∗(x∗)− 〈x, y∗0 − x∗〉) ,

≤ F ∗(y∗0)− (F ∗(y∗0)− F ∗(x∗)− sup
z∈∂F∗(x∗)∩K

〈z, y∗0 − x∗〉.

Thus,

(4.9) sup
x∈K

〈x, y∗0〉 − F (x) ≤ F (y∗0)− inf
x∗∈X∗

D(y∗0 , x
∗).

On the other hand, for x∗ ∈ X∗ with ∂F ∗(x∗) ∩ K 6= ∅, let ǫ > 0 and take x ∈
∂F ∗(x∗) ∩K satisfying

sup
z∈∂F∗(x∗)∩K

〈z, y∗0 − x∗〉 − ǫ ≤ 〈x, y∗0 − x∗〉.

Then

F (y∗0)−D(y∗0 , x
∗) ≤ F (y∗0)− (F ∗(y∗0)− F ∗(x∗)− 〈x, y∗0 − x∗〉 − ǫ),

= 〈x, y∗0〉 − F (x) + ǫ.

Hence,

sup
x∈K

〈x, y∗0〉 − F (x) + ǫ ≥ F (y∗0)− inf
x∗∈X∗

D(y∗0 , x
∗).

Since ǫ is arbitrary, we obtain equality of the values of F (y∗0) − infx∗ D(y∗0 , x
∗) and

(4.3). Finally, if x0 solves (4.3), then we know that x∗0 ∈ ∂F (x0) solves (4.1). We also
have

sup
x∈K

〈x, y∗0〉 − F (x) = 〈x0, y
∗
0〉 − F (x0),

≤ F ∗(y∗0)−D(y∗0 , x
∗
0),

≤ F ∗(y∗0)− inf
x∗∈dom(F∗)

D(y∗0 , x
∗),

= sup
x∈K

〈x, y∗0〉 − F (x).
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Equality of the first expression and the last mean that each inequality is an equality;
thus x∗0 solves (4.4) as claimed, which completes the proof of statements b and c.

We now address the dichotomy. If ∂F ∗(y∗0)∩K 6= ∅, then by Lemma 4.3 the only
minimizer of (4.4) is y∗0 . So suppose ∂F ∗(y∗0) ∩K = ∅. Then it is clear that x∗0 6= y∗0 ,
since D(y∗0 , x

∗
0) < +∞, and hence ∂F ∗(x∗0) ∩K 6= ∅. For any solution x0 to (4.3), we

obtain x0 ∈ ∂F ∗(x∗0) by (4.8). We also have (4.7), and thus via the last equality of
(4.8),

〈−x0, x
∗
0 − y∗0〉 = 1∗K(x∗0 − y∗0),

which is (4.5). Since x0 ∈ K, we have ‖x0‖K ≤ 1. On the other hand, if ‖x0‖K < 1,
then since x∗0 6= y∗0 there is no possibility of (4.5) holding.

5. Proof of Theorem 1.3. In Subsection 5.1 we will demonstrate that the
hypotheses of Theorem 4.5 hold for (WROF). In addition, we will describe the diver-
gence D in this context. In Subsection 5.2 we will use these preliminaries to complete
the proof of Theorem 1.3.

5.1. Preliminaries. Recall that in the context of (WROF), K = λ-Lip(Ω), and
F : C(Ω) → R given by

F (ϕ) = −

∫

Ω

ϕc2dµ.

We mentioned in Example 4.2 that F defined in this way is convex and continuous, and
that F ∗ is strictly convex provided µ≪ Ld and Ld(∂Ω) = 0. Further, K = λ-Lip(Ω) is
closed, convex, and non-empty, and satisfiesK = −K. The only remaining hypothesis
of Theorem 4.5 to verify is that (4.3) has a solution. In this setting (4.3) takes the
form

(5.1) sup
ϕ∈λ-Lip(Ω)

∫

Ω

ϕc2dµ+

∫

Ω

ϕdν.

The existence of a solution could be proved by standard arguments, but we will do so
by re-writing (5.1) as an unconstrained problem in terms of the Huber cost function
c2,λ (see (1.7) for the definition); this will be useful to us later.

For µ, ρ ∈ P(Ω), let Ic2,λ(µ, ρ) be the transport cost, i.e.

Ic2,λ(µ, ρ) := inf
γ∈Π(µ,ρ)

∫

Ω×Ω

c2,λ(x, y)dγ(x, y),

where Π(µ, ρ) is the set of probability distributions on Ω×Ω with marginal distribu-
tions given by µ and ρ. Since c2(x, y) ≥ c2,λ(x, y), we have 1

2W
2
2 (µ, ρ) ≥ Ic2,λ(µ, ρ).

We now prove an easy fact about the c2,λ-transform.

Lemma 5.1. If Ω is convex and ϕ ∈ λ-Lip(Ω), then

(5.2) ϕc2,λ(x) = ϕc2(x) ∀x ∈ Ω

where, recall,

ϕc2,λ(x) := inf
y∈Ω

c2,λ(x, y)− ϕ(y).
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Proof. Let Bλ(x) be the closed Euclidean ball of radius λ centred at x. We claim
that ϕ ∈ λ-Lip(Ω) implies that for all x ∈ Ω,

(5.3) ϕc2(x) = inf
y∈Ω∩Bλ(x)

c2(x, y) − ϕ(y).

Indeed, for y ∈ Ω \ Bλ(x), let z be the projection of y onto Bλ(x) in the Euclidean
norm; note that z ∈ Ω by convexity of Ω. Since c2 is convex and differentiable in its
second variable, we have

c2(x, y) ≥ c2(x, z) + 〈z − x, y − z〉 = c2(x, z) + λ|z − y|,

so

c2(x, y)− ϕ(y) ≥ c2(x, z) + λ|z − y| − ϕ(y) ≥ c2(x, z)− ϕ(z).

This proves (5.3). We can also prove, by a nearly identical argument, that the infimum
in

ϕc2,λ(x) = inf
y∈Ω

c2,λ(x, y)− ϕ(y),

can also be restricted to Bλ(x) ∩ Ω. Since c2,λ(x, y) = c2(x, y) when |x− y| ≤ λ, the
conclusion follows.

An immediate consequence of the preceding lemma is that we can re-write (5.1) as
an unconstrained problem in terms of the cost c2,λ.

Lemma 5.2. When Ω is convex, the problems (5.1) and

(5.4) sup
ϕ∈C(Ω)

∫

Ω

ϕc2,λdµ+

∫

Ω

ϕdν

are equivalent; they have the same value, a solution to (5.1) is a solution to (5.4),
and a c2,λ-concave solution to (5.4) is a solution to (5.1).

Proof. Let ϕ ∈ C(Ω) be a candidate for maximizing (5.4). Without loss of gener-
ality we may take ϕ c2,λ-concave, and since c2,λ(x, y) = h(|x− y|) for h ∈ λ-Lip(R+),
we obtain ϕ ∈ λ-Lip(Ω) as well. So (5.4) can be re-written as

sup
ϕ∈λ-Lip(Ω)

∫

Ω

ϕc2,λdµ+

∫

Ω

ϕdν

We have already shown in Lemma 5.1 that when Ω is convex and ϕ ∈ λ-Lip(Ω),
ϕc2,λ = ϕc2 . This establishes the equivalence of the problems.

The existence of a solution to (5.1) now follows from the existence of a Kantorovich
potential for the transport problem Ic2,λ(µ, ν).

Lemma 5.3. Let Ω ⊂ R
n be compact and convex. For µ, ν ∈ P(Ω), problem (5.1)

has a solution.

Proof. Since the cost c2,λ is uniformly continuous and bounded on Ω×Ω, we may
use Theorem 1.39 of [30] to conclude that there exists a c2,λ-concave function ϕλ such
that

Ic2,λ(µ, ν) = sup
ϕ∈C(Ω)

∫

Ω

ϕc2,λdµ+

∫

Ω

ϕdν,

=

∫

Ω

ϕ
c2,λ
λ dµ+

∫

Ω

ϕλdν.
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By Lemma 5.2, ϕλ is a solution of (5.1).

The hypotheses of Theorem 4.5 being validated, we may apply it to (WROF),
and we will do so in Subsection 5.2. As a preliminary step, however, it will be helpful
to specify the subdifferential of F , since the minimizer of (WROF) will be given by
∂F (ϕλ) if ϕλ solves (5.1).

Lemma 5.4. For ϕ ∈ C(Ω), ∂F (ϕ) is non-empty, and

(5.5) ∂F (ϕ) = {ρ ∈ P(Ω) |

∫

Ω

ϕc2dµ+

∫

Ω

ϕdρ =
1

2
W 2

2 (ρ, µ)}.

Further, if ∂Ω has Lebesgue measure 0, µ ≪ Ld, and T : Ω → Ω is any Borel map µ
almost everywhere equal to I −∇ϕc2 , then

∂F (ϕ) = {T#µ}.

Proof. Since F is convex, proper, and continuous everywhere, Theorem 2.4.9
from [35] shows that ∂F (ϕ) is non-empty for all ϕ. Since F is a convex, proper, and
continuous function, we invoke (4.8) to state that

ρ ∈ ∂F (ϕ) ⇔ ϕ ∈ ∂F ∗(ρ) = ∂

(

1

2
W 2

2 (·, µ)

)

(ρ).

Via Proposition 7.17 from [30], we obtain (5.5).
Thus, ρ ∈ ∂F (ϕ) means that ϕc2 is a Kantorovich potential forW2(µ, ρ). Suppose

in addition ∂Ω has Lebesgue measure 0 and µ ≪ Ld. The characterisation of the
optimal transport map for the cost c2(x, y) =

1
2 |x− y|2 in Theorem 1.17 of [30] then

confirms that ρ = T#µ, for any T µ almost everywhere equal to I −∇ϕc2 .

It will also be useful to study the divergence D in the context of (WROF), specifically
where it is finite. This is the content of the next subsection.

5.1.1. The divergence D in the context of (WROF). Here we will provide
a characterisation of the set of measures ρ such that D(ν, ρ) < +∞. We will also
provide an economic interpretation of D on this set.

First, set Bλ(µ) as the set of all measures ρ that are reachable from µ under an
optimal plan for the cost c2,λ such that no point moves more than distance λ,

(5.6) Bλ(µ) = {ρ ∈ P(Ω) | ∃γ0 optimal for Ic2,λ(µ, ρ) s.t. spt(γ0) ⊂ {|x− y| ≤ λ}}.

We consider Bλ(µ) because the following lemma shows that it is exactly the set of
ρ ∈ P(Ω) such that ∂F ∗(ρ) ∩K 6= ∅, and thus D(ν, ρ) < +∞. In particular it is the
set of measures ρ such that W 2

2 (ρ, µ) has an λ-Lipschitz Kantorovich potential. We
also provide a third characterisation of Bλ(µ) as the set of all measures which are
close enough to µ that there are no savings to be had using the discounted cost c2,λ.

Lemma 5.5. Let Ω be compact and convex. Then the following are equivalent

1. ρ ∈ Bλ(µ),
2. ∂

(

1
2W

2
2 (·, µ)

)

(ρ) ∩ λ-Lip(Ω) 6= ∅, and,
3. 1

2W
2
2 (µ, ρ) = Ic2,λ(µ, ρ).

Proof. We will proceed by proving 1 ⇒ 2 ⇒ 3 ⇒ 1. Let ρ ∈ Bλ(µ). Let ϕ be a
c2,λ-concave function such that

Ic2,λ(µ, ρ) =

∫

Ω

ϕc2,λdµ+

∫

Ω

ϕdρ.
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Since ϕ is c2,λ-concave we obtain that ϕ ∈ λ-Lip(Ω). For γ0 the optimal plan trans-
porting µ to ρ from the definition of Bλ(µ), we have

1

2
W 2

2 (µ, ρ) ≤
1

2

∫

Ω×Ω

|x− y|2dγ0,

=

∫

Ω×Ω

c2,λ(x, y)dγ0,

=

∫

Ω

ϕc2,λdµ+

∫

Ω

ϕdρ,

=

∫

Ω

ϕc2dµ+

∫

Ω

ϕdρ,

≤
1

2
W 2

2 (µ, ρ).

In the second to last line we have used Lemma 5.1. Equality of the first and last terms
mean we have equality throughout, and thus ϕ ∈ ∂

(

1
2W

2
2 (·, µ)

)

(ρ) ∩ λ-Lip(Ω).
Second, if ρ ∈ P(Ω) is such that there exists ϕ satisfying

ϕ ∈ ∂

(

1

2
W 2

2 (·, µ)

)

(ρ) ∩ λ-Lip(Ω),

then, using Lemma 5.1,

1

2
W 2

2 (µ, ρ) =

∫

Ω

ϕc2,λdµ+

∫

Ω

ϕdρ,

≤ Ic2,λ(µ, ρ).

Since 1
2W

2
2 (µ, ρ) ≥ Ic2,λ(µ, ρ) in general, we have 1

2W
2
2 (µ, ρ) = Ic2,λ(µ, ρ).

Finally, suppose 1
2W

2
2 (µ, ρ) = Ic2,λ(µ, ρ). Since Ω is compact, there exists an

optimal plan γ0 ∈ Π(µ, ρ) for W2(µ, ρ). We compute

1

2
W 2

2 (µ, ρ) =

∫

Ω×Ω

c2(x, y)dγ0(x, y),

≥

∫

Ω×Ω

c2,λ(x, y)dγ0(x, y),(5.7)

≥ Ic2,λ(µ, ρ),

=
1

2
W 2

2 (µ, ρ).

Equality of the first and last term means we have equality throughout. This indicates
that γ0 is optimal for Ic2,λ(µ, ρ), and

γ0({(x, y) ∈ Ω | |x− y| > λ}) = 0,

otherwise the inequality in (5.7) would be strict. Thus, ρ ∈ Bλ(µ).

In the context of (WROF), the divergence D previously defined in (4.2) takes the
following form:

Dλ(ν, ρ) =
1

2
W 2

2 (ν, µ)−
1

2
W 2

2 (ρ, µ)

− sup{〈ϕ, ν − ρ〉 | ϕ ∈ ∂

(

1

2
W 2

2 (·, µ)

)

(ρ) ∩ λ-Lip(Ω)},(5.8)
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with µ ∈ P(Ω) a fixed reference measure. Here we have introduced the notation Dλ

to make the dependence of D on the scale λ explicit.
We now detail the economic interpretation of (5.8) that we mentioned in Subsec-

tion 1.1. Here we assume that goods are manufactured with distribution µ, purchased
from the manufacturer with distribution ρ and sold to consumers with distribution ν.
In this setting Dλ(ν, ρ) represents the total loss of value in a supply chain when the
transport cost has an economy of scale and consumers adopt a “buy local” policy.

Indeed if anyone can move goods from x to y for a transport cost of c2,λ(x, y), it
is well known5 that the maximum profit obtainable for transporting µ to ρ while still
being competitive with this global shipping rate is Ic2,λ(µ, ρ), and that a potential

ϕ ∈ ∂
(

Ic2,λ(·, µ)
)

(ρ)

represents an optimal sale price as a function of location. We suppose that instead
of shipping directly to consumers, the manufacturer sells to a retailer, who purchases
product with distribution ρ and sells with distribution ν, both at price ϕ. The profits
obtained by the retailer are therefore

〈ϕ, ν − ρ〉.

Given µ and ρ, there may be several optimal prices ϕ, and since all of them result in the
same benefit for the manufacturer, they allow the retailer to choose one that maximizes
their profit. However, the manufacturer specifies that ϕ ∈ λ-Lip(Ω); otherwise the
retailer may be able to exploit an arbitrage against the global shipping cost c2,λ. The
profits of the retailer are then

sup{〈ϕ, ν − ρ〉 | ϕ ∈ ∂
(

Ic2,λ(·, µ)
)

(ρ) ∩ λ-Lip(Ω)}.

We now suppose that the consumers impose a “buy local” policy, in the sense that
they will not tolerate goods being shipped more than distance λ to retailers. The
retailer must modify ρ to compensate for this, and by definition the only admissible
distributions are those in Bλ(µ). If ρ ∈ Bλ(µ) however, Lemma 5.1 and Lemma 5.5
show that

ϕ ∈ ∂
(

Ic2,λ(·, µ)
)

(ρ) ∩ λ-Lip(Ω) ⇔ ϕ ∈ ∂

(

1

2
W 2

2 (·, µ)

)

(ρ) ∩ λ-Lip(Ω).

Since Ic2,λ(µ, ρ) =
1
2W

2
2 (µ, ρ) for ρ ∈ Bλ(µ), the total profits for both manufacturer

and retailer are

1

2
W 2

2 (µ, ρ) + sup{〈ϕ, ν − ρ〉 | ϕ ∈ ∂

(

1

2
W 2

2 (·, µ)

)

(ρ) ∩ λ-Lip(Ω)}.

Subtracting this from the baseline 1
2W

2
2 (µ, ν), we see that Dλ(ν, ρ) is indeed the total

loss of value when product is purchased by retailers at distribution ρ and sold at
distribution ν under a buy local policy for consumers and when transportation over
scale λ is discounted.

5.2. Applying Theorem 4.5 to (WROF). With Bλ(µ) and Dλ defined, we
can finally apply Theorem 4.5 to characterise ρλ, the unique minimizer of (WROF),

5See, for example, [34], page 65
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as a projection of ν onto Bλ(µ) with respect to the divergence Dλ . The following
result is a more detailed version of Theorem 1.3 from Section 1.

Theorem 5.6. Let Ω be compact and convex with non-negligible interior, and

suppose µ≪ Ld. Then

a. (WROF) has a unique solution ρλ = (Tλ)#µ, where Tλ = I − ∇ϕc2
λ almost

everywhere and ϕλ solves (5.1)
b. ρλ is also a solution to

(5.9) min
ρ∈Bλ(µ)

Dλ(ν, ρ)

and

c. the values of (WROF), (5.1), and 1
2W

2
2 (ν, µ)−Dλ(ν, ρλ) coincide.

Given statement b, we have the following dichotomy.

1. If ν ∈ Bλ(µ), then ρλ = ν.
2. Otherwise, ρλ 6= ν. Furthermore, any solution ϕλ to (5.1) satisfies ϕλ ∈
∂
(

1
2W

2
2 (·, µ)

)

(ρλ), Lip(ϕλ) = λ, and

(5.10) 〈ϕλ, ν − ρλ〉 = λW1(ρλ, ν).

Finally, Tλ is the unique optimal transport map for W2(µ, ρλ), and satisfies (1.11).

Remark 5.7. This result, together with Lemma 5.2, provides a proof of statement
1 of Proposition 1.4. Moreover, recalling Lemma 3.2, we observe that I −∇ϕc2

0 is the
solution map to (1.4). Thus, Theorem 5.6 also proves statement 2 of Proposition 1.4.

Proof. We have already described how F (ϕ) = −
∫

Ω
ϕc2dµ and K = λ-Lip(Ω)

satisfy the hypotheses of Theorem 4.5; in particular, µ≪ Ld and Ld(∂Ω) = 0 guaran-
tee strict convexity of F ∗. Further, Lemma 5.3 guarantees the existence of a solution
to (5.1). Statements a, b, and c then follow immediately from Theorem 4.5 and
Lemma 5.4.

Since we have shown that ρ ∈ Bλ(µ) is equivalent to ∂F
∗(ρ)∩K 6= ∅ in Lemma 5.5,

we see that the condition of the dichotomies in this proposition and Theorem 4.5
correspond. The only part of statements 1 and 2 in Theorem 5.6 that is not an
immediate implication of Theorem 4.5 is that Lip(ϕλ) = λ, but this comes from
determining that ‖ϕλ‖K = Lip(ϕλ)/λ. Further, Tλ is optimal for W2(µ, ρλ) since
Tλ = I −∇ϕc2

λ almost everywhere and ϕλ ∈ ∂
(

1
2W

2
2 (·, µ)

)

(ρλ). Finally, (1.11) holds
since Lip(ϕc2

λ ) ≤ λ by Lemma 5.1.

This result, together with Lemma 5.2 furnishes an additional description of the
value of (WROF) which is useful in proving the interpretation of Dλ(ν, ρλ) in (1.8).

Corollary 5.8. Under the hypotheses of Theorem 5.6, the minimal value of

(WROF) is equal to

(5.11) Ic2,λ(µ, ν) = inf{

∫

Ω×Ω

c2,λ(x, y)dγ | γ ∈ Π(µ, ν)}.

Proof. Observe that (5.4) is a standard Kantorovich potential problem, and thus
via Theorem 5.6, Lemma 5.2, and Theorem 1.39 of [30] we get that the value of
(WROF) coincides with (5.11).

We now turn to the proof of Theorem 1.6. A crucial role is played by the absolute
continuity of ρλ, and the proof of this property is the focus of the following section.
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6. Absolute continuity of ρλ. The following proposition provides conditions
under which ρλ is guaranteed to be absolutely continuous, and proves statement 1
from Theorem 1.6.

Proposition 6.1. Suppose that Ω ⊂ R
d is compact and convex, with a non-empty

interior. If µ and ν are absolutely continuous with respect to Lebesgue measure, then

ρλ, the unique solution to (WROF), is absolutely continuous as well.

The rest of this section is devoted to proving Proposition 6.1, and the plan is as
follows. First, in Subsection 6.1 we use the alternate expression for the dual problem
(5.1) furnished by (5.4) to obtain a better understanding of how ρλ relates to µ and
ν. Namely, there is an optimal transport plan γ0 for (5.11), and ρλ is obtained
by completing all transport in this plan that moves less than distance λ, as well as
progressing all transport that moves more than distance λ as much as possible while
retaining ρλ ∈ Bλ(µ). We use this understanding to decompose ρλ into a sum of two
measures, and by proving that each of these is absolutely continuous, we will obtain
that ρλ is absolutely continuous as well.

6.1. Consequences of Lemma 5.2 for a minimizer of (WROF). Recall
Corollary 5.8, which says that the value of (WROF) coincides with that of (5.11).
By Theorem 1.4 of [30], an optimal plan for the latter exists since Ω is compact;
throughout this section we will refer to this plan by the notation γ0. Let us also fix
ϕλ as a solution of (5.1) which is c2,λ-concave; such a ϕλ exists by Lemma 5.2. The
following simple result characterises ∇ϕc2

λ , and thus the solution of (WROF) (see
Theorem 5.6), in terms of γ0.

Lemma 6.2. Let Ω be compact and convex with non-negligible interior. Let γ0 be

optimal in (5.11). If (x, y) ∈ spt(γ0), with x in the interior of Ω and a differentiable

point of ϕc2
λ , then

∇ϕc2
λ (x) =

{

x− y |x− y| ≤ λ,

λ x−y
|x−y| |x− y| ≥ λ.

Thus, there is at most one y ∈ Bλ(x) such that (x, y) ∈ spt(γ0) and in that case

x−∇ϕc2
0 (x) = y.

Proof. Since ϕλ solves (5.1), Lemma 5.2 implies that ϕλ also solves (5.4), and
Lemma 5.1 gives that ϕc2 = ϕc2,λ . Since ϕλ is optimal potential in (5.4) we have

ϕc2
λ (x) + ϕλ(y) ≤ c2,λ(x, y)

with equality on the support of γ0. Thus, if (x, y) ∈ spt(γ0), the minimum of

inf
z
c2,λ(z, y)− ϕc2

λ (z)

is obtained at x. If x is interior to Ω and a differentiable point of ϕc2
λ , then

0 = ∇xc2,λ(x, y)−∇ϕc2
λ (x).

Computing the derivative of c2,λ, we obtain the claim.

We note that since Tλ(x) = x − ∇ϕc2
λ (x) almost everywhere, Lemma 6.2 proves

statement 3 of Proposition 1.4.
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6.2. A decomposition of ρλ. Define the Borel measures

(6.1) µa = (πx)#γ0|{|x−y|≤λ}, µb = (πx)#γ0|{|x−y|>λ},

where πx and πy are the canonical projections. Let Tλ be a Borel map which is almost
everywhere equal to I−∇ϕc2

λ . Recalling that Tλ is optimal for the transport between
µ and ρλ for the cost c2 (see Theorem 5.6), define

(6.2) ρaλ = (Tλ)#µ
a, ρbλ = (Tλ)#µ

b.

It is clear that µ = µa + µb, and from this we obtain ρλ = ρaλ + ρbλ. We will prove
that ρλ ≪ Ld by showing the same for ρaλ and ρbλ.

It is easier to prove that ρaλ ≪ Ld, and that is the content of the following lemma.
We will actually prove the stronger result that ρaλ(E) ≤ ν(E) for all Borel E. This
inequality should be expected given the discussion following Lemma 6.2, which says
that the map I − ∇ϕc2

λ completes all transport in γ0 that moves less than distance
λ. Since the mass that moves less than distance λ under γ0 is precisely µa, and γ0
transports µ to ν, that ρaλ ≤ ν is not surprising.

Lemma 6.3. If µ≪ Ld, then for all E ⊂ Ω Borel we have

(6.3) ρaλ(E) ≤ ν(E).

As such, if ν ≪ Ld, we have ρaλ ≪ Ld as well.

Proof. Observe that if

(6.4) γ0|{|x−y|≤λ} = (I, Tλ)#µ
a,

then we are done, since then for E ⊂ Ω Borel,

ρaλ(E) = (πy)#(I, Tλ)#µ
a(E),

= (πy)#γ0|{|x−y|≤λ}(E),

= γ0(Ω× E ∩ {|x− y| ≤ λ}),

≤ γ0(Ω× E),

= ν(E).

So, we focus on proving (6.4). Note first that if γ0|{|x−y}≤λ is the zero measure, then
(6.4) automatically holds. We therefore proceed assuming that

γ0|{|x−y|≤λ}(Ω× Ω) > 0.

Recall the potential ϕλ, optimal in (5.1). Since ϕc2
λ is Lipschitz, it is differentiable

almost everywhere. Thus, Ld(∂Ω) = 0 implies that there exists a Borel measurable
set G ⊂ Ω \ ∂Ω such that ϕc2

λ is differentiable on G, Tλ(x) = x−∇ϕc2
λ (x) on G, and

Ld(G
c) = 0. We therefore have, for E1, E2 ⊂ Ω Borel,

γ0|{|x−y|≤λ}(E1 × E2) = γ0(E1 × E2 ∩ {|x− y| ≤ λ}),

= γ0(E1 × E2 ∩ {|x− y| ≤ λ} ∩ spt(γ0) ∩G× Ω).

Here, the second equality holds since µ≪ Ld. Next, we claim that

{|x− y| ≤ λ} ∩ spt(γ0) ∩G× Ω ⊂ ΓTλ
(G),
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the latter being the graph of the map Tλ over G. Indeed, if (x, y) is in the set on the
left hand side, then according to Lemma 6.2 we get y = x−∇ϕc2

0 (x) = Tλ(x), which
proves the claim. We observe, however, that

(E1 × E2) ∩ ΓTλ
(G) = (E1 ∩ T

−1
λ (E2)× Ω) ∩ ΓTλ

(G).

As such,

γ0|{|x−y|≤λ}(E1 × E2) = γ0(E1 × E2 ∩ {|x− y| ≤ λ} ∩ spt(γ0) ∩G× Ω),

= γ0(E1 ∩ T
−1
λ (E2)× Ω ∩ {|x− y| ≤ λ}),

= γ0|{|x−y|≤λ}(E1 ∩ T
−1
λ (E2)× Ω),

= µa(E1 ∩ T
−1
λ (E2)),

= (I, Tλ)#µ
a(E1 × E2).

Thus, γ0|{|x−y|≤λ} and (I, Tλ)#µ
a agree on all measurable rectangles E1 ×E2. Since

µa(Ω) = γ0|{|x−y|≤λ}(Ω × Ω), we can multiply γ0|{|x−y|≤λ} and (I, Tλ)#µ
a by the

same constant to obtain probability measures. These probability measures agree on
all measurable rectangles, and hence by Theorem 3.3 of [5] they are equal. This
implies (6.4), completing the proof.

Remark 6.4. We note that Lemma 6.3 implies that absolute continuity of µ is not
enough to obtain ρλ ≪ Ld. Indeed, if ν and Ld are singular and µa is non-zero, then
ρaλ is non-zero and Lemma 6.3 implies that ρaλ and Ld are singular. Thus, for singular
ν, ρλ may have a non-zero singular component with respect to Lebesgue measure.

6.3. Proof that ρbλ ≪ Ld. The general idea of the argument is to take E ⊂ Ω
Borel with measure 0 and write

ρbλ(E) = (πx)#γ0||x−y|>λ(T
−1
λ (E)),

= γ0(T
−1
λ (E)× Ω ∩ {|x− y| > λ} ∩ spt(γ0)).

We will show that the set in the preceding line is contained in a set of the form A×Ω
for A Borel with measure 0, which will guarantee that ρbλ(E) = 0 since µ≪ Ld.

We will start with some simple observations about the set of (x, y) inside the
support of γ0 with |x − y| > λ. We will use the notion of the transport rays of a
1-Lipschitz function (see, for example, Definition 3.7 of [30]).

Lemma 6.5. If (x, y) ∈ spt(γ0) with |x−y| > λ, then x and y are in transport rays

of ϕc2
λ /λ and −ϕλ/λ, respectively. If ϕc2

λ is differentiable at x and x is an interior

point of Ω, then the increasing directions of both rays are parallel to ∇ϕc2
λ (x). Further,

x −∇ϕc2
λ (x) is in the same ray as y, and this is the unique transport ray of −ϕλ/λ

containing x−∇ϕc2
λ (x).

Proof. Since (x, y) ∈ spt(γ0), Kantorovich duality gives us that

ϕc2
λ (x) + ϕλ(y) = c2,λ(x, y).

By the equality ϕc2
λ = ϕ

c2,λ
λ ,

ϕc2
λ (x) = inf

z∈Ω
c2,λ(x, z)− ϕλ(z),

and so we know the infimum is obtained at y. Note that since |x−y| > λ, by traversing
the segment [x, y] starting at y we obtain a rate of decrease of λ per unit distance
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for c2,λ(x, ·). Since −ϕλ is λ-Lipschitz, we must therefore have that the infimum is
also obtained at every point z ∈ [x, y] with |x − z| ≥ λ. This is only possible if −ϕλ

increases at maximal rate along this non-trivial segment, and thus [x + λ y−x
|y−x| , y],

and therefore y, is contained in a transport ray of −ϕλ/λ. This transport ray has
increasing direction parallel to x− y, which will be needed later.

Since ϕc2
λ ∈ λ-Lip(Ω) as well, we can prove that x is in a transport ray of ϕc2

λ /λ
with a nearly identical argument, starting from the equality

ϕλ(y) = inf
z∈Ω

c2,λ(y, z)− ϕc2
λ (z).

which holds since ϕλ is c2,λ-concave.
If ϕc2 is differentiable at x, then it is clear that∇ϕc2(x) is parallel to the increasing

direction of the transport ray of ϕc2/λ that x is in. On the other hand, the increasing
direction of the transport ray of −ϕλ/λ containing y is parallel to x − y, which is
parallel to ∇ϕc2

λ by Lemma 6.2. By the same lemma we have

x+ λ
y − x

|y − x|
= x−∇ϕc2

λ (x),

which verifies that x−∇ϕc2
λ (x) is in the same transport ray of −ϕλ/λ as y.

To see that the transport ray containing x − ∇ϕc2
λ (x) is unique, suppose x −

∇ϕc2
λ (x) is contained in two transport rays of −ϕλ/λ. As we have shown, one of these

has decreasing direction parallel to −∇ϕc2
λ (x), and since |x− y| > λ, non-zero length

in this direction. Noting that two transport rays can only collide at a point which is
the upper (or lower) endpoint of both rays (see, for example, Lemma 10 of [7]), we
get that if x − ∇ϕc2

λ (x) is in a second ray, it must be at the upper endpoint of that
ray. Let the decreasing direction of the other ray be given by the unit vector v. We
compute

d

dt
|t=0c2,λ(x, x −∇ϕc2

λ (x) + tv)− ϕλ(x−∇ϕc2
λ (x) + tv) = λ〈v,−

∇ϕc2
λ (x)

|∇ϕc2
λ (x)|

〉 − λ,

= λ(〈v,
y − x

|y − x|
〉 − 1),

< 0,

the final inequality coming from the fact that v 6= y−x
|y−x| , and both have unit norm.

As such, t 7→ c2,λ(x, x −∇ϕc2
λ (x) + tv)− ϕλ(x −∇ϕc2

λ (x) + tv) is strictly decreasing
for t ∈ (0, ǫ) for some ǫ, contradicting the fact that the infimum of c2,λ(x, y) − ϕλ(y)
is obtained at x−∇ϕc2

λ (x).

We can now prove that the upper endpoints of the transport rays of −ϕλ/λ
correspond to upper endpoints of the transport rays of ϕc2

λ /λ.

Lemma 6.6. Suppose (x, y) ∈ spt(γ0) with |x− y| > λ, and suppose ϕc2
λ is differ-

entiable at x and x is an interior point of Ω. If x−∇ϕc2
λ (x) is at the upper end point

of its transport ray of −ϕλ/λ then x is at the upper end point of a transport ray of

ϕc2
λ /λ.

Proof. From Lemma 6.5 we have that x is in a transport ray of ϕc2
λ /λ. Suppose it

is not the upper endpoint. Then there exists w on the same transport ray obtaining
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a strictly larger value of ϕc2
λ . As such

ϕλ(y) = c2,λ(x, y)− ϕc2
λ (x),

= c2,λ(x, y)− ϕc2
λ (w) + λ|w − x|,

= c2,λ(w, y)− ϕc2
λ (w).

Here the last line holds because the transport ray that x is in is parallel to the segment
[x, y]. Since ϕc2

λ = ϕ
c2,λ
λ ,

ϕc2
λ (w) = inf

z∈Ω
c2,λ(w, z)− ϕλ(z),

and the infimum is obtained at y. Since |w − y| > λ + |w − x|, we obtain that all
points on the segment [w + λ y−w

|y−w| , y] are on a transport ray of −ϕλ/λ. The point

x−∇ϕc2
λ (x) is in the interior of this ray, and thus is not the upper endpoint.

We can now prove that ρbλ is absolutely continuous with respect to Lebesgue
measure. The general argument is the following. Take E Borel negligible, x ∈ T−1

λ (E),
and suppose that there exists y such that (x, y) ∈ spt(γ0) with |x − y| > λ. Then,
ignoring x at the start of transport rays of ϕc2

λ /λ (which is a Borel negligible set
anyway), we can show that x = z−∇ϕλ(z) for z ∈ E. Since x is not at the start of its
transport ray, z cannot be at the start of its transport ray. Away from the endpoints
of transport rays the map z 7→ z−∇ϕλ(z) is Lipschitz

6, allowing us to conclude that
our set of x is Lebesgue negligible.

Proposition 6.7. The measure ρbλ satisfies ρbλ ≪ Ld.

Proof. Let E ⊂ Ω be Borel negligible. Then

ρbλ(E) = (πx)#γ0||x−y|>λ(T
−1
λ (E)),

= γ0((T
−1
λ (E) ∩ Ec ∩G)× Ω ∩ {|x− y| > λ} ∩ spt(γ0)),(6.5)

where Ec is the complement of the set of ray endpoints of ϕc2
λ /λ, and G is as before.

Both sets are Borel and have full Lebesgue measure7, justifying the equality (6.5). If
(x, y) is in the set appearing in (6.5), then by Lemma 6.5, x−∇ϕc2

λ (x) is in a unique
transport ray of −ϕλ/λ, and by Lemma 6.6 x−∇ϕc2

λ (x) is not at the upper endpoint
of that ray. Since |x − y| > λ, x −∇ϕc2

λ (x) is also not at the lower endpoint of that
ray. By Lemma 3.6 of [30], −ϕλ/λ is differentiable at x −∇ϕc2

λ (x), and Lemma 6.5
implies that

x = x−∇ϕc2
λ (x)−∇ϕλ(x−∇ϕc2

λ (x)) = Tλ(x)−∇ϕλ(Tλ(x)).

Thus, if (x, y) is in the set appearing in (6.5), then x = z −∇ϕλ(z) for some z ∈ E
and in the interior of a transport ray of −ϕλ/λ. As in Proposition 6 of [25], for each
j ∈ {1, 2, . . .} set Aj as the set of points z that are on a transport ray of −ϕλ/λ and
more than distance 1/j from either endpoint, and recall that by Lemma 22 of [7],
−∇ϕλ is a Lipschitz function on Aj . We therefore obtain that if (x, y) is in the set
appearing in (6.5), then

x ∈
∞
⋃

j=1

(I −∇ϕλ)(E ∩Aj).

6see the proof of Lemma 22 of [7], or Proposition 6 of [25].
7For a proof that Ld(E) = 0, see Lemma 25 of [7] or Lemma 3.1.8 of [16].
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Since E is Borel negligible, and ∇ϕλ is a Lipschitz map on Aj , we obtain that the set
(I−∇ϕλ)(E∩Aj) is Lebesgue measurable for all j and has measure 0. By regularity of
Lebesgue measure, there exists for each j a Borel set Uj containing (I−∇ϕc2

λ )(E∩Aj)
with zero Lebesgue measure. As such,

ρbλ(E) ≤
∞
∑

j=1

γ0(Uj × Ω) =
∞
∑

j=1

µ(Uj) = 0

because µ≪ Ld.

We have therefore proven Proposition 6.1, and thus statement 1 of Theorem 1.6, by
proving that ρbλ and ρaλ are absolutely continuous (Lemma 6.3 and Proposition 6.7).

7. Characterisation of an optimal map for the Huber cost. In this sec-
tion we will prove statements 2 and 3 of Theorem 1.6. The essential result is the
characterisation of an optimal map transporting ν to µ for the Huber cost c2,λ as a
composition of a Wasserstein 2 optimal map with a Wasserstein 1 optimal map. We
note that the existence of an optimal map for the cost c2,λ does not follow trivially
from standard results in the optimal transport literature (e.g. Theorem 1.17 of [30])
since the cost c2,λ(x, y) is not a strictly convex function of |x− y|.

The following lemma proves that the gradient of ϕλ is ν almost surely unchanged
by applying an optimal transport map for W1(ν, ρλ), and will be useful in proving the
existence of an optimal transport map for the Huber cost. Throughout this section
we tacitly assume the hypotheses of Theorem 1.6.

Lemma 7.1. Let Sλ be an optimal transport map for W1(ν, ρλ), which exists since

ν ≪ Ld. Let ϕλ be a c2,λ-concave solution to (5.4). Then ν almost everywhere ∇ϕλ(y)
and ∇ϕλ(Sλ(y)) exist. Further if Sλ(y) 6= y, they satisfy

(7.1) ∇ϕλ(y) = ∇ϕλ(Sλ(y)) = λ
y − Sλ(y)

|y − Sλ(y)|
.

Proof. The potential ϕλ is c2,λ-concave, and thus ϕλ ∈ λ-Lip(Ω). Since ν ≪ Ld,
ϕλ is therefore differentiable ν almost everywhere. Further,

ν({y | ∇ϕλ(Sλ(y)) exists}) = ν(S−1
λ ({z | ∇ϕλ(z) exists}),

= ρλ({z | ∇ϕλ(z) exists}),

= 1,

since ρλ ≪ Ld (Proposition 6.1). So ∇ϕλ(Sλ(y)) exists ν almost everywhere as
well. Since ϕλ solves (5.1) via Lemma 5.2, we obtain via Theorem 5.6 that ϕλ/λ
is a Kantorovich potential for W1(ν, ρλ). Since Sλ is an optimal transport map for
W1(ν, ρλ) we obtain that for ν almost all y ∈ Ω,

λ|Sλ(y)− y| = ϕλ(y)− ϕλ(Sλ(y)).

Thus, if Sλ(y) 6= y, we obtain that [y, Sλ(y)] is in a transport ray of ϕλ/λ. Via Lemma
3.6 of [30] we obtain (7.1) whenever ϕλ is differentiable at both y and Sλ(y).

Now we can prove the existence of an optimal transport map S0 from ν to µ under the
cost c2,λ by composing a Wasserstein 1 optimal map from ν to ρλ with a Wasserstein
2 optimal map from ρλ to µ. Conversely, we will prove that all such optimal S0 can
be written in this way. The following result proves statement 2 of Theorem 1.6.
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Lemma 7.2. Let ϕλ be a c2,λ-concave solution to (5.4). If Rλ is a Borel map

almost everywhere equal to I −∇ϕλ, and Tλ is a Borel map almost everywhere equal

to I −∇ϕc2
λ , then

(7.2) Rλ ◦ Tλ(x) = x

µ almost everywhere, so we write Rλ as T−1
λ . A map S0 is an optimal transport

map for transporting ν to µ under the cost c2,λ if and only if S0 can be written as

S0 = T−1
λ ◦ Sλ, where Sλ is an optimal map for W1(ν, ρλ).

Proof. The claim (7.2) is well known, and follows since ϕλ is a Kantorovich po-
tential for 1

2W
2
2 (ρλ, µ) and Tλ is an optimal transport map for 1

2W
2
2 (µ, ρλ), and thus

ϕc2
λ (x) + ϕλ(Tλ(x)) =

1

2
|x− Tλ(x)|

2,

µ almost everywhere. Using ρλ ≪ Ld, one can then easily show (7.2). Let S0 be
given by S0 = T−1

λ ◦ Sλ. This same equality also implies that (T−1
λ )#ρλ = µ, and so

(S0)#ν = µ. We now wish to prove that for ν almost all y,

c2,λ(S0(y), y) = c2,λ(S0(y), Sλ(y)) + λ|y − Sλ(y)|.

This is clear if Sλ(y) = y. If Sλ(y) 6= y, then this equality is an immediate consequence
of Lemma 7.1. We therefore compute

∫

Ω

c2,λ(S0(y), y)dν(y) =

∫

Ω

c2,λ(S0(y), Sλ(y))dν(y) + λ

∫

Ω

|y − Sλ(y)|dν(y),

=

∫

Ω

c2(T0(z), z)dρλ(z) + λW1(ρλ, ν),

=
1

2
W 2

2 (µ, ρλ) + λW1(ρλ, ν),

= Ic2,λ(µ, ν),

where the last line follows from Corollary 5.8. This verifies that S0 is optimal for
transporting ν to µ with the pointwise cost c2,λ.

Conversely, suppose S0 is optimal for transporting ν to µ under this cost. If we can
prove that Tλ◦S0 is optimal forW1(ν, ρλ), we will be done. Clearly, (Tλ◦S0)#ν = ρλ,
and since ϕλ/λ is a Kantorovich potential for W1(ν, ρλ) via Theorem 5.6, optimality
of this map will be proved if we can show that

(7.3) λ|y − Tλ(S0(y))| = ϕλ(y)− ϕλ(Tλ(S0(y)))

ν almost everywhere. To see this, observe that (S0, I)#ν is an optimal plan for (5.11),
and (S0(y), y) is in the support of this plan for ν almost all y. Conditioning ν on
|S0(y) − y| ≤ λ, we obtain y = Tλ(S0(y)) with probability 1 via Lemma 6.2, and
thus (7.3) holds trivially. Conditioning on |S0(y)− y| > λ, we may use Lemma 6.5 to
obtain that [Tλ(S0(y)), y] is in a transport ray of ϕλ/λ ν almost surely, which proves
(7.3) in this case.

The following result proves statement 3 of Theorem 1.6 by demonstrating that by
applying the soft thresholding operator (1.14) to the map S0, one recovers Sλ.
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Proposition 7.3. Let S0 = T−1
λ ◦ Sλ be an optimal transport map from ν to µ

for the cost c2,λ as obtained in Lemma 7.2. Then ν almost everywhere,

Sλ(y) = y + sλ(|S0(y)− y|)
S0(y)− y

|S0(y)− y|
,

where sλ(|S0(y)− y|) S0(y)−y

|S0(y)−y| = 0 if S0(y) = y.

Proof. Take ϕλ and T−1
λ as in Lemma 7.2, and set

E := S−1
λ ({z | T−1

λ (z) = z −∇ϕλ(z)}).

Then E has full ν measure. If y ∈ E and Sλ(y) = y, then S0(y) = T−1
λ (y). Since

ϕλ ∈ λ-Lip(Ω), we obtain that

y + sλ(|S0(y)− y|)
S0(y)− y

|S0(y)− y|
= y = Sλ(y).

If y ∈ E and Sλ(y) 6= y, then by Lemma 7.1, |S0(y)− y| > λ ν almost surely. Thus,

y + sλ(|S0(y)− y|)
S0(y)− y

|S0(y)− y|
= y + (|S0(y)− y| − λ))

Sλ(y)− y

|Sλ(y)− y|
,

= y + |Sλ(y)− y|
Sλ(y)− y

|Sλ(y)− y|
,

= Sλ(y).

8. Iterative procedures involving (WROF). In this section we study the
iterative procedures described in Subsection 1.2 and Subsection 1.3. The main content
is a proof of Proposition 1.8 and Theorem 1.10.

8.1. Iterative regularization. Here we will prove our iterative regularization
result Proposition 1.8. Recall the setting; we take µ, ν ≪ Ld, and (λn)

∞
n=0 a sequence

of positive step sizes with sum converging to +∞. Set µ0 := µ, and for n ≥ 0 define

µn+1 := argmin
ρ∈P(Ω)

1

2
W 2

2 (ρ, µn) + λnW1(ρ, ν).

We note that (µn)
∞
n=1 is well defined given Lemma 5.3, Theorem 5.6, and Propo-

sition 6.1. The first two results establish the existence of a unique solution to the
minimization problem in (1.17) when µ ≪ Ld, and the latter guarantees that this
solution will be absolutely continuous as well.

Before we analyse the convergence of the sequence (µn)
∞
n=1, we establish a simple

estimate on W1(µn, ν).

Lemma 8.1. Let Ω be convex and compact with non-negligible interior. Take µ≪
Ld, and let ρλ solve (WROF). Denoting an arbitrary optimal transport plan for the

cost c2,λ from µ to ν as γ0, define µ
a and µb as in (6.1). Then

(8.1) W1(ρλ, ν) ≤ µb(Ω) diam(Ω),

where diam(Ω) = sup{|x− y| | x, y ∈ Ω}.
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Proof. Recall the definitions of ρaλ and ρbλ from (6.2). Note that if ρbλ(Ω) = 0, we
obtain via Lemma 6.3 that ν = ρaλ = ρλ, and thus (8.1) holds. We therefore proceed
assuming that ρbλ(Ω) 6= 0. We have

W1(ρλ, ν) = sup
u∈1-Lip(Ω)

〈u, ρλ − ν〉,

= sup
u∈1-Lip(Ω)

〈u, ρaλ + ρbλ − ν〉,

= sup
u∈1-Lip(Ω)

〈u, ρbλ − (ν − ρaλ)〉

Via Lemma 6.3 we get that ν − ρaλ is a non-negative measure. Moreover, it has the
same total mass as ρbλ. As such

W1(ρλ, ν) = ρbλ(Ω) sup
u∈1-Lip(Ω)

〈u,
ρbλ

ρbλ(Ω)
−

ν − ρaλ
(ν − ρaλ)(Ω)

〉,

= µb(Ω)W1

(

ρbλ
ρbλ(Ω)

,
ν − ρaλ

(ν − ρaλ)(Ω)

)

,

≤ µb(Ω) diam(Ω),

as claimed.

We can now prove our convergence result for (µn)
∞
n=1, which relies on Lemma 8.1.

Proof of Proposition 1.8. We first establish that W1(µn, ν) is monotonically de-
creasing in n. Indeed, by definition of µn,

W1(µn, ν) ≤W1(µn−1, ν)−
1

2λn−1
W 2

2 (µn, µn−1) ≤W1(µn−1, ν).

Iterating the first inequality, we also obtain that

W1(µn, ν) ≤W1(µ, ν)−
n−1
∑

i=0

1

2λi
W 2

2 (µi+1, µi).

Thus,

(8.2)

∞
∑

i=0

1

2λi
W 2

2 (µi+1, µi) <∞.

For each i, let γi be an optimal plan for the transport from µi to ν under the cost
c2,λi

, and define

µb
i := (πx)#(γi||x−y|>λi

).

Let ϕi be a solution to (5.1) with µ replaced by µi and λ replaced by λi. Since
I − ∇ϕc2

i is almost everywhere equal to an optimal transport map from µi to µi+1

(see Theorem 5.6), and using Lemma 6.2, we obtain

1

2λi
W 2

2 (µi, µi+1) ≥
1

2λi
λ2iµ

b
i(Ω) =

1

2
λiµ

b
i(Ω).
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As such, (8.2) implies

(8.3)
∞
∑

i=1

λiµ
b
i(Ω) <∞.

By (1.16), we obtain that lim infi µ
b
i (Ω) = 0. Lemma 8.1 implies that

W1(µi+1, ν) ≤ µb
i(Ω) diam(Ω).

Since lim infi µ
b
i (Ω) = 0, we therefore obtain

(8.4) lim inf
i

W1(µi, ν) = 0,

as well. But W1(µi, ν) is monotonically decreasing in i, and so (8.4) implies (1.18).

8.2. Multiscale transport and a non-linear energy decomposition. In
this section we prove Theorem 1.10. We already have most of the necessary ingredi-
ents. Let us recall the setting of this procedure. We assume µ ≪ Ld and suppose λ0
is given. For each n ≥ 0, set λn+1 = λn/2 and define

(8.5) νn+1 := argmin
ρ∈P(Ω)

1

2
W 2

2 (ρ, µ) + λnW1(ρ, νn),

where ν0 := ν.

Remark 8.2. This procedure consists of iteratively solving (4.1), starting with y∗0
as ν0 and replacing it at each stage by νn, as well as halving the scale parameter. If
the same is done in the context of ROF, starting with y∗0 = 0, one obtains a sequence
of functions (wn)

∞
n=1 which are the partial sums of the multiscale decomposition in

Theorem 1.9. In this light (8.5) is analogous to (1.19).

Proof of Theorem 1.10. The assumption µ ≪ Ld, together with Lemma 5.3 and
Theorem 5.6 guarantee for all n that the argmin in (1.23) exists and is unique. To
prove statement 1, we note that by (1.11)

1

2
W 2

2 (µ, νn) ≤
1

2
λ2n−1 = 2−2n+1λ20,

which proves (1.24). To obtain the energy equality (1.25), we observe that

1

2
W 2

2 (µ, ν) =
1

2
W 2

2 (µ, ν1) +
1

2
W 2

2 (µ, ν0)−
1

2
W 2

2 (µ, ν1)− λ0W1(ν0, ν1)

+ λ0W1(ν0, ν1),

=
1

2
W 2

2 (µ, ν1) +Dλ0
(ν0, ν1) + λ0W1(ν0, ν1).

where in the second line we have used the equality of (WROF) and (5.9), proven in
Theorem 5.6. Iterating this equality, we obtain

1

2
W 2

2 (µ, ν) =
1

2
W 2

2 (µ, νk) +

k−1
∑

n=0

Dλn
(νn, νn+1) + λnW1(νn, νn+1).

Letting k go to infinity and using (1.24), we obtain (1.25).



AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 35

REFERENCES
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[27] S. Mukherjee, M. Carioni, O. Öktem, and C.-B. Schönlieb, End-to-end reconstruction

meets data-driven regularization for inverse problems, Advances in Neural Information
Processing Systems, 34 (2021), pp. 21413–21425.

[28] S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem, and C.-B. Schönlieb,
Learned convex regularizers for inverse problems, arXiv preprint arXiv:2008.02839, (2020).

[29] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algo-

rithms, Physica D: nonlinear phenomena, 60 (1992), pp. 259–268.
[30] F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations,

PDEs, and Modeling, vol. 87, Birkhäuser, 2015.
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